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Abstract. The extended Schwinger quantization procedure is used for constructing quantum mechanics on
a manifold with a group structure. The considered manifold M is a homogeneous Riemannian space with
the given action of an isometry transformation group. Using the identification of M with the quotient space
G/H, where H is the isotropy group of an arbitrary fixed point of M , we show that quantum mechanics
on G/H possesses a gauge structure, described by a gauge potential that is the connection 1-form of the
principal fiber bundle G(G/H, H). The coordinate representation of quantum mechanics and the procedure
for selecting the physical sector of the states are developed.

1 Introduction

The purpose of this paper is to propose a natural devel-
opment of the method described in our previous paper
[2], where we have introduced an extension of Schwinger’s
quantization procedure [1] in order to consider quantum
mechanics on a manifold with a group structure. In [2],
this approach has been realized for the case of a homo-
geneous Riemannian manifold admitting the action of a
simply transitive group of isometries.

In this paper we consider a more general type of n-
dimensional homogeneous Riemannian manifold M with
a p-dimensional group of isometries acting on M transi-
tively (but not simply transitively). In this case part of
the isometry transformations form an isotropy group of
any point of M , so it is possible to treat this group as a
group of local gauge transformations.

This paper is organized as follows. In Sect. 2 we briefly
examine the geometry structure of a homogeneous Rie-
mannian manifold. Such a manifold is isomorphic to the
quotient space G/H, where H denotes the isotropy group
of an arbitrary fixed point of M . In Sect. 3 the operator
Lagrangian L describing a free particle in the configura-
tion space G is presented in accordance with [2], where
its form has been derived by requiring L to be scalar in-
variant under a general coordinate transformation on G.
The extension of the configuration space from M ∼= G/H
to G causes the problem of fixing the gauge invariance
associated with additional degrees of freedom.

To eliminate unphysical states that appear due to the
presence of the gauge degrees of freedom we use the (m+
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n)-decomposition that is usual in theories of Kaluza–Klein
type [3]. After introducing the special coordinate system
on G that provides this decomposition, the algebra of the
commutation relations is constructed in Sect. 4. In Sect. 5
we give the Heisenberg equation of motion describing a
free particle on G/H. It turns out that the dynamics on
G/H is governed by a Lorentz-type force expressed in
terms of the gauge field in the usual way. The gauge poten-
tial is the same as the connection 1-form of the principal
fiber bundle G(G/H,H). In Sect. 6 the coordinate repre-
sentation of quantum mechanics on G/H is discussed. A
special feature of the theory consists of the emergence of a
gauge structure induced by some isotropy group H ⊂ G,
and described by the concrete unitary representation of
H in the space of states. Different irreducible representa-
tions determine unequivalent quantum theories on G/H.
The corresponding quantum states are classified by eigen-
values of the Casimir operator of the representation of H.

The conclusions obtained from the model we are con-
sidering are in accordance with the concepts introduced
in [4], where the method of investigation is somewhat dif-
ferent from ours.

2 Structure
of homogeneous Riemannian manifold

A smooth manifold M is called homogeneous, if it admits
the transitive action of a Lie group G. We assume that
dim(M) = n, dim(G) = p > n. This assumption means
that the action of G on M is not simply transitive; the
case of a simply transitive transformation group (i.e. when
p = n) has been investigated in our previous paper [2].
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A left action of G on M is determined by the following
differentiable map:

ρg : M −→ M,

q −→ q := ρg(q),
(2.1)

where ρg ∈ Diff(M) satisfies the conditions
(1) ∀g1,2 ∈ G, ρg1 ◦ ρg2 = ρg1g2 ;
(2) ρe = idM , e ∈ G is the unit element (here idM de-
notes an identity map on M).

For a point q ∈ M the subset I(q) := {g ∈ G : ρgq =
q} ⊂ G is a subgroup of G. This group is called the
isotropy group (or stabilizer) of q ∈ M . As the action ρ
of G is transitive, all isotropy groups are conjugate, i.e.
∀q = ρgq, I(q) = autgI(q) := gI(q)g−1.

Fixing an arbitrary point q0 ∈ M , we introduce a sub-
group H := I(q0) ⊂ G, dim(H) = m. By means of this
subgroup we construct the quotient space G/H = {gH :
g ∈ G}, dim(G/H) = p − m = n. We denote the ele-
ment of G/H by [g], where the element g ∈ G in brackets
represents the equivalence class gH.

We define a canonical projection

p : G −→ G/H,

q −→ p(g) := [g],
(2.2)

which determines the structure of the principal fiber bun-
dle G(G/H,H) with the total space G, the base space
G/H and the structure group H. The fiber under the point
[g] ∈ G/H is p−1([g]) = gH ⊂ G.

On the other hand, we can naturally define the left
transitive action of G on G/H by the following map:

ρg : G/H −→ G/H,

[g1] −→ ρg[g1] := [gg1].
(2.3)

The stabilizer of [e] ∈ G/H under the transformation (2.3)
is the subgroup H ⊂ G, because ∀g ∈ G, [gH] = [g]. For
[g] ∈ G/H we have I([g]) = gHg−1.

Hence, there is a one-to-one correspondence between
the points of M and those of G/H. Namely, q0 ∈ M and
q = ρgq0 correspond to [e] ∈ G/H and [g] ∈ G/H re-
spectively. We will identify M with G/H throughout this
text.

In order to analyze the local properties of the principal
fiber bundle G(G/H,H) and the metric structure of G and
G/H we introduce local coordinates on G, H and G/H.

Hereafter we utilize notation of indices as follows. The
first lot of Latin capital letters A,B, . . . = 1, p is used to
represent the frame {TA|e : A = 1, p} of TeG (the space
of tangent vectors to G at e ∈ G). The final lot of Latin
capital letters M,N . . . = 1, p is used to mark the local
coordinates {xM (g) : M = 1, p} of g ∈ G.

The structure equation for a (left) Lie algebra Lie(G),
which consists of left translations of the elements of TeG,
has the usual form

[LA, LB ] = cC
ABLC , (2.4)

where cC
AB are structure constants of G, LA is a left-

invariant vector field over G, defined as LA|g := deLg

(TA|e) (Lg denotes a left translation map, see Ap-
pendix A).

As far as H is a Lie subgroup of G, for the correspond-
ing Lie algebras we have a similar inclusion: Lie(H) ⊂
Lie(G) (subalgebra) and TeH ⊂ TeG (vector subspace).
We can choose the basic fields of TeG in such a way that
part of them forms the basis of TeH. So we can decom-
pose the set {TA : A = 1, p} as TA = (Ta, Ti), where
{Ti : i = n + 1, p} is the basis of TeH, marked by small
Latin letters i, j, k . . . = n + 1, p, with the structure equa-
tion

[Li, Lj ] = ck
ijLk, ca

ij = 0, (2.5)

and {Ta : a = 1, n} corresponds to the remaining part of
the basic vectors of TeG. In other words, the index A = 1, p
can be decomposed as A = (a, i).

Due to (2.5) the following system of partial differential
equations has n independent solutions:

LM
i ∂Mϕ(x(g)) = 0. (2.6)

These n independent solutions are {ϕα(x(g)) : α = 1, n}.
Here L = {LM

A } denotes the matrix of left translations on
G (see Appendix A for its properties).

Now we introduce a new coordinate system on G by
means of the following transformation:{

xα = ϕα(x(g)),
xµ = xµ.

(2.7)

Hereafter {xM} are assumed to refer to the new coordinate
system on G. Therefore, the coordinate index M = 1, p
is decomposed like the one for the group, namely M =
(α, µ), where α, β . . . = 1, n and µ, ν . . . = n + 1, p. The
meaning of {xα} and {xµ} will be determined later.

In new coordinates the matrix of left translations on
G receives the form

L = {LM
A } =

(
Lα

a Lµ
a

0 Lµ
i

)
, Lα

i = 0. (2.8)

If det(L) = det(Lα
a ) det(Lµ

i ) �= 0, the matrix (2.8) has the
inverse

L−1 := L = {LA

M} =

(
L

a

α L
i

α

0 L
i

α

)
, L

a

µ = 0, (2.9)

where

L
a

α = (L−1)α
a , L

i

µ = (L−1)µ
i , L

i

α = −L
a

αL
µ
aL

i

µ. (2.10)

The matrices {La
α}, {Li

µ} and their inverses satisfy
the equations following from (2.4) and the Maurer–Cartan
equation taking into account the fact that ca

ij = 0.
As far as a left Lie algebra commutes with a right one

we can generally write RM
A ∂MLN

B = LM
B ∂MRN

A and, in
particular, {

∂µR
α
A = 0,

∂αR
β
A = RM

A L
a

α∂MLβ
a .

(2.11)
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As to the other relations like (2.11): their explicit forms
are not important in the following consideration.

The set of coordinates {xα : α = 1, n} in the decom-
position xM = (xα, xµ) is independent of the point at the
orbit: ∀h ∈ H, xα(gh) = xα(g). To prove this statement
one can rewrite xM (gh) as a Taylor expansion

xM (gh) = xM (g) + xM (h) + . . .

taking into account Lα
i = 0.

Therefore, we can write the local form of the projection
map as

p : G −→ G/H,

{xα(g), xµ(g)} −→ {xα(g)}. (2.12)

Hence, the local coordinate system on G/H can be
defined by

xα([g]) := xα(g). (2.13)

According to (2.2) and (2.12), the action of G on the
quotient space can be represented as follows:

xα(ρg[g1]) = xα([gg1]) = xα(gg1). (2.14)

Let gA(τ) ∈ G, gA(0) = e be the integral curve of the
basic vector field:

LA|e = LM
A (e) ∂M |e = TA|e ∈ TeG. (2.15)

Then the corresponding vector field over G/H, induced
by the action of G on G/H, has the form

d
dτ

∣∣∣∣
τ=0

xα(gA(τ)g)

=
∂xα(gA(τ)g)
∂xM (gA(τ))

∣∣∣∣
gA=e

· dxM (gA(τ))
dτ

∣∣∣∣
τ=0

= Rα
M (g)δM

A = Rα
A(g). (2.16)

In particular,

∀h ∈ H, Rα
A(h) = Rα

A(e) = δα
A

determines the transformations of I([e]) on G/H, as it
must.

In the special coordinate system, defined in (2.7), using
the diagonal form of the metric of TeG (see Appendix A)

{ηAB} =

(
gab 0
0 gij

)
, (2.17)

we find the following form for the left-invariant metric of
G:

ηMN := ηABL
A

ML
B

N = gabL
a

ML
b

N + gijL
i

ML
j

N ; (2.18)

ηMN := ηABLM
A LN

B = gabLM
a LN

b + gijLM
i LN

j . (2.19)

Using the definition of the connection on the principal
fiber bundle G(G/H,H) (see Appendix B)

Aµ
α := L

i

αL
µ
i = −L

a

αL
µ
a , (2.20)

the metric tensor (2.18) and its inverse (2.19) receive the
form

{ηMN} =

(
ηαβ ηµβ

ηαν ηµν

)

=

(
gαβ + gρσA

ρ
αA

σ
β gµρA

ρβ ,

Aρ
αgρν gµν

)
, (2.21)

{ηMN} =

(
ηαβ ηµβ

ηαν ηµν

)

=

(
gαβ −gγβAµ

γ

−gαγAν
γ gµν + gγδAµ

γA
ν
δ

)
, (2.22)

where we denote the metric tensors of G/H and H by

gαβ = gabL
a

αL
b

β , gαβ = gabLα
aL

β
b (2.23)

and

gµν = gijL
i

µL
j

ν , gµν = gijLµ
i L

ν
j , (2.24)

respectively.
Note that a similar form of the metric tensor (2.21)

and (2.22) appears in the Kaluza–Klein scheme [3].
The right-invariant vector fields RA = RM

A ∂M are the
Killing vectors for the left-invariant metric ηMN of G, as
follows from the definition of {RM

A }.
Using (2.21) we can rewrite the Killing equation for

{ηMN} in the following form:

−Rγ
A∂γg

αβ + gαγ∂γR
β
A + gβγ∂γR

α
A = Rµ∂µg

αβ . (2.25)

On the other hand, we can define the metric of G/H from
the metric {ηMN} of G, requiring the map dp to be an
isometry.

A direct calculation shows that the metric of G/H is
described by {gαβ}. If we treat G/H as a homogeneous
Riemannian manifold, we have to conclude from (2.25)
that ∂µg

αβ = 0. This condition means that the Lie vari-
ation of ηMN for left-invariant vector fields LA = LM

A ∂M

vanishes, i.e. {ηMN} is invariant. This is possible if and
only if G is a semisimple group. In this case the metric
{ηAB} of TeG can be identified with an adjoint-invariant
Cartan–Killing form.

It is useful to write down here the explicit form of the
Killing equations δηMN = 0 for left-invariant vector fields
in the special coordinate system

∂µgαβ = 0,

Lµ
i ∂µA

ν
α = Aµ

α∂µL
ν
i − ∂αL

N
i ,

Lσ
i ∂σgµν + gµσ∂νL

σ
i + gνσ∂µL

σ
i = 0. (2.26)

Hence, we have shown that the homogeneous Rieman-
nian manifold M can be identified with the quotient space
G/H, where G is the isometry group of M and H = I(q0)
is a stabilizer of an arbitrary fixed point q0 ∈ M . The
general geometric analysis of this problem is presented in
[5].
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3 Quantum Lagrangian for free particle
in homogeneous Riemannian space

Now we consider quantum mechanics for a free particle in
a homogeneous Riemannian space M , dim(M) = n with a
given action of the group G of isometries, and dim(G) =
p > n. As has been shown in the previous section, the
configuration space M can be identified with the quotient
space G/H, where H, dim(H) = m = p − n, denotes the
stabilizer of an arbitrary fixed point of M .

In the construction of quantum theory, based on
Schwinger’s quantization approach, a key role is played by
the realization of the Lie algebra Lie(G) of G induced by
the realization of G on M . The set of independent Killing
vectors, associated with the basis of Lie(G), possesses the
properties of permissible variations {δqµ}, where {qµ} de-
note the set of coordinate operators describing the posi-
tion of a particle.

In the case of the homogeneous Riemannian mani-
fold G/H the number p = dim(G) of independent Killing
vectors is higher than the dimension n of the manifold
G/H. Some of these vectors form the representation of
the isotropy group I([g]), dim(I([g])) = m = p − n, that
depends on the choice of a point [g] ∈ G/H. The trans-
formations of I([g]) can be treated as local gauge ones.
Therefore, we can divide the independent Killing vectors
at [g] ∈ G/H into two sets. The first one generates non-
trivial transformations on G/H, the second one realizes
the action of the stabilizer subgroup I([g]) ⊂ G on M
(the group of local gauge transformations).

Making an attempt to realize Schwinger’s quantization
procedure immediately as in [2], one observes the same
difficulties as in the usual gauge models. Here, as in any
theory with first-class constraints, there is the problem of
fixing the gauge degrees of freedom, which number in our
model equals m = dim(G) − dim(G/H).

This procedure is performed in the present model by
means of introducing a new configuration space G (the
space of the isometry group). The local coordinate system
in G is described by

xM = {xM (g) : xM (g) = {xα([g]), xµ(g)}, g ∈ G},
M = 1, p, α = 1, n, µ = n + 1, p, (3.1)

where {xµ()} are coordinates in the orbit gH.
The metric {ηMN (g) : M,N = 1, p} has been defined

in the previous section by the formulae (2.21) and (2.22).
Of course, the enlargement of the number of degrees

of freedom from n = dim(G/H) to p = dim(G) brings
about the appearance of unphysical quantum states. The
procedure for their elimination will be presented later.

The quantum Lagrangian describing a free particle in
the new configuration space G has the following form:

LG :=
1
2
ẋMηMN (g)ẋN − Uq(g); (3.2)

it has been introduced in [2]. Here Uq(g) denotes a so-
called “quantum potential”. Its role consists in provid-
ing the scalar invariance of (3.2) under a general coordi-
nate transformation xM → xM = xM (x) on G (note that
[xM , ẋN ] �= 0).

Taking into account the (m+ n)-decomposition of the
metric in the special coordinate system, introduced in the
previous section, the Lagrangian (3.2) can be written as

LG =
1
2
ẋαgαβ([g])ẋβ +

1
2

(ẋµ + ẋαAµ
α(g))

× gµν(g)
(
ẋν + Aν

β(g)ẋβ
)
, (3.3)

where the first term corresponds to the kinetic energy of a
particle on G/H, while the appearance of the second term
is caused by the extension of the physical configuration
space from G/H to G.

Since G acts on itself simply transitively, the method
of constructing quantum theory based on the Lagrangian
(3.2) (or (3.3)) coincides with that of the one developed
in [2]. Note that due to the semisimplicity of G, there
are two equivalent sets of Killing vectors {vM

A (g)}, that
correspond to the matrices of left and right translations
on G, i.e. {LM

A (g)} and {RM
A (g)} respectively.

In accordance with [2] the permissible variations of the
coordinate operators {xM} can be written in the following
form:

δxM = εAvM
A (g),

G = εAvM
A ◦ pM , pM := ηMN ◦ ẋN . (3.4)

Here εA is an infinitesimal c-number parameter of a coor-
dinate transformation on G.

4 Algebra of commutation relations

Constructing the algebra of the commutation relations for
operators describing the quantum mechanics of the par-
ticle on G/H, we will use the fact that the algebra to be
found is contained in the wider one associated with quan-
tum mechanics on G.

At first, we consider the right isometries of the metric
{ηMN}. In this case, in accordance with the results of the
previous sections, the Killing vectors coincide with left-
invariant vector fields {Lµ

i (g) ∂µ|g}, which determine the
generator of right translations as follows:

Gi = LM
i ◦ pµ,

pµ := ηµN ◦ ẋN = gµν ◦ (ẋν + Aν
α ◦ ẋα) . (4.1)

In this case

δix
α = 0 =

1
i�

[xα, Lµ
i ◦ pµ],

δix
µ = Lµ

i =
1
i�

[xµ, Lµ
i ◦ pµ]. (4.2)

Since [xM , Lµ
i ] = 0 and det(Lµ

i ) �= 0 we can conclude
from (4.2) that [

xM , pµ

]
= i�δM

µ . (4.3)

For the case of an arbitrary function f({xM}) depend-
ing on the coordinates {xM} we have

δif = LM
i ∂Mf = Lµ

i ∂if =
1
i�

[f, Lν
i ◦ pν ] ; (4.4)
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then

[f, pµ] = i�∂µf. (4.5)

Taking into account the transformation law of pµ under
the transformation xM → xM + δxM one can easily find

[pµ, pν ] = 0. (4.6)

The commutation relations developed in this way deter-
mine the quantum mechanics on the orbit gH.

Using the commutation relations (4.3)–(4.6) and the
structure equation for {Lµ

i }, one can directly prove that

[pi, pj ] = −i�ck
ijpk, (4.7)

where pi := Lµ
i ◦ pµ.

Further we consider the left isometries of the metric
{ηMN} which are described by the set of Killing vectors
{RM

A ∂M}. The generator of these transformations has the
form

GA = RM
A ◦ pM = Rα

A ◦ πα + (Rµ
A + Aµ

αR
α
A) ◦ pµ, (4.8)

where we denote

pα = ηαM ◦ ẋM = πα + Aµ
α ◦ pµ,

πα = gαβ ◦ ẋβ ,

pµ = gµν ◦ (ẋν + Aν
α ◦ ẋα) . (4.9)

The vector {πα}, rewritten as

πα = pα − Ai
α ◦ pi, Ai

µ = L
i

µA
µ
α = L

i

α, (4.10)

has the meaning of the momentum operator of a free parti-
cle on G/H. As far as {Rα

A∂α} are Killing vectors of G/H,
the first term in (4.8) coincides with the generator of the
isometry transformations of the metric of G/H, while the
second one is caused by the extention of the configuration
space from G/H to G.

To define the operator properties of πα, we consider
the variation of an arbitrary function f(x) of only the
{xM}’s:

δAf = RM
A ∂Mf =

1
i�

[f,GA]. (4.11)

Substituting the explicit form of the generator G into
(4.11) one can rewrite (4.11) as

Rα
M ◦ [f, πα] = i�Rα

A

(
∂α − Ai

αLi

)
f,

Li = Lµ
i ∂i. (4.12)

Using the fact that {RA

M} is the inverse of {Rµ
A} we can

contract (4.12) with R
A

M ; then

[f, πα] = i�Dαf, Dα := ∂α − Ai
αLi. (4.13)

The commutator of the new derivatives Dα acts on the
scalar function f({xM}) as

[Dα, Dβ ] f = −F i
αβLi, (4.14)

where

F i
αβ = ∂αA

i
β − ∂βA

i
α + ci

jkA
j
αA

k
β . (4.15)

A direct calculation leads to

[πα, πβ ] = i�F i
αβ ◦ pi. (4.16)

The object {F i
αβ} in (4.14)–(4.16) can be treated as

a strength tensor of the gauge field Ai
α on G/H. The cor-

responding gauge group is the isotropy group H ⊂ G.

5 Equations of motion and Hamiltonian

Using the same procedure as developed in [2] one can con-
struct the Hamiltonian for the system in the configuration
space G, expressed in terms of the momentum operators
pM = ηMN ◦ ẋN . The Hamiltonian is completely deter-
mined by the initial Lagrangian:

HG =
1
2

(
pM − i�

2
ΓM

)
ηMN

(
pN +

i�
2
ΓN

)

=
1
2
pMηMNpN + VG(x), (5.1)

where

VG =
�

2

4

(
∂MΓM +

1
2
ΓMΓM

)
,

ΓM = ΓN
MN =

1
2 det(ηMN )

∂M det(ηMN ). (5.2)

Here ΓM
N1N2 denotes the Christoffel symbol constru-

cted with the metric {ηMN}.
Using the properties of the (m+n)-decomposition one

can rewrite (5.1) as

HG = HG/H + Horb, (5.3)

where

HG/H =
1
2

(
πα − i�

2
Γα

)
gαβ

(
πβ +

i�
2
Γβ

)

=
1
2
παg

αβπβ + VG/H , (5.4)

Horb =
1
2
pig

ijpj

=
1
2

(
pµ − i�

2
Γµ

)
gµν

(
pν +

i�
2
Γν

)

=
1
2
pµg

µνpν + Vorb. (5.5)

The objects Γα = Γ β
αβ and Γµ = Γ ν

µν are defined anal-
ogously to ΓM . The “quantum potentials” VG/H and Vorb
have the form

VG/H =
�

2

4

(
∂αΓ

α +
1
2
ΓαΓα

)
,

Vorb =
�

2

4

(
∂µΓ

µ +
1
2
ΓµΓµ

)
. (5.6)
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The Heisenberg equations of motion describing the dy-
namics in G can be derived by means of the (m + n)-
decomposition of the metric

ṗM =
1
i�

[pM , HG] . (5.7)

Performing the direct calculation and using the commu-
tative relations, one can find

π̇α =
1
2
πβ∂αg

βγπγ +
(
Fαβ ◦ gβγ

) ◦ πγ + ∂αVG/H , (5.8)

ṗi = 0, (5.9)

where we denote Fαβ := F i
αβ ◦ pi.

So we can conclude from (5.8) and (5.9) that the mo-
tion of a particle is governed by a Lorentz-type force rep-
resented by the second term in the right hand side of (5.8).
This object is determined by the strength tensor (4.15) of
the gauge potential Ai

α. The motion of a particle on the
orbit gH is completely flat due to the conservation law
(5.9).

The main result of this section consists in the emer-
gence of a gauge structure in quantum theory on a ho-
mogeneous manifold. Such a structure is induced by the
additional degrees of freedom caused by an isotropy group.
This result is not surprising, because the given theory can
be considered as a version of the Kaluza–Klein scheme,
which has been exhaustively investigated in a great num-
ber of works [3].

6 Coordinate representation
and physical sector of states

The procedure for constructing the quantum space of
states for quantum mechanics on a homogeneous Rieman-
nian manifold with the simply transitive action of the
transformation group G has been introduced in [2]. The
results obtained are quite applicable in the case we are
considering. The problem arising here is how to eliminate
the unphysical states (this does not refer to quantum me-
chanics on G/H) from the whole set of states of the quan-
tum mechanics on G. The simplest way to perform such a
procedure consists of using the (m + n)-decomposition.

According to [2] the coordinate representation of the
operators, corresponding to quantum mechanics on G, is
defined by its action on the wave functions

ψ(x) := 〈x |ψ〉 (6.1)

(here |x〉 is an eigenvector of the coordinate operator and
|ψ〉 denotes an arbitrary state vector) has the following
form:

x̂M = xM ,

p̂M = −i�
(
∂M +

1
2
ΓM

)
. (6.2)

Similarly we can write

ĤG = −�
2

2
(∂M + ΓM ) ηMN (∂M + ΓM )

= −�
2

2
1√
η
∂M

(√
ηηMN∂N

)
, (6.3)

where η = det(ηMN ).
The wave function (6.1) satisfies the Schrödinger equa-

tion

−�
2

2
1√
η
∂M

(√
ηηMN∂Nψ

)
= Eψ. (6.4)

The coordinate representation of the generator of permis-
sible variations on G has the form

Ĝ = εAv̂M
A ◦ p̂M = −i�εAvM

A ∂M , (6.5)

which can be derived using (6.2) and the properties of the
Killing vectors {vM

A ∂M : a = 1, p}.
Hence, the coordinate and momentum operators can

be rewritten in terms of the (m + n)-decomposition as

x̂µ = xµ, p̂µ = −i�
(
∂µ +

1
2
Γµ

)
(6.6)

for the operators describing quantum mechanics on the
orbit gH, and

x̂α = xα, p̂α = −i�
(
∂α +

1
2
Γα

)
(6.7)

for the operators describing quantum mechanics on the
quotient space G/H.

Further we consider the procedure of the selection of
the physical sector, or, in other words, the states repre-
sented by the subset L2(G/H) ⊂ L2(G) that describes
quantum mechanics on G/H.

The wave function ψ ∈ L2(G) performs the map

ψ : G −→ Cn,

which can be restricted to the function on G/H by means
of the section of G(G/H,H):

s : G/H −→ G,

[g] −→ s([g]) ∈ gH (6.8)

that meets the condition ρ(s([g])) = g and performs the
correspondence between the equivalence class [g] and its
representative gh = s([g]) ∈ gH ⊂ G for some h ∈ H. In
this expression the element h ∈ H completely determines
the section s; therefore we denote this section as sh.

Hence

ψ ◦ sh := φ : G/H −→ Cn, (6.9)
[g] −→ φ([g]) = ψ(sh([g])) ≡ ψ(gh)

is the wave function on G.
The matrix elements of the physical observables cal-

culated on the wave functions φ = ψ ◦ s ∈ L2(G/H) have
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to be independent of the choice of the section sh. This is
possible if and only if the wave functions φ := ψ ◦ sh and
φ′ := ψ ◦ sh′ are connected by the unitary transformation

φ′([g]) ≡ ψ(gh′) ≡ ψ(ghh−1h′)
= U(h, h′)ψ(gh) = U(h, h′)φ([g]). (6.10)

Therefore one can show that the wave functions of the
physical sector obey the condition

ψphys(gh) = σh−1ψphys(g), (6.11)

where σh−1 is the right unitary representation of H ⊂ G
in Cn (while σh is the left one).

The representation of H on the physical states induces
the representation of Lie(H) as

σ̃i :=
d
dτ

∣∣∣∣
τ=0

σhi(τ) ∈ vect(Cn) ∼= Cn, (6.12)

where hi(τ) ∈ H is an integral curve for the basic ele-
ment Ti|e ∈ TeH. The connection between (6.12) and the
generator of coordinate transformation can be expressed
by

σ̃iψphys =
d
dτ

∣∣∣∣
τ=0

ψphys(gh−1
i (τ))

=
∂ψphys(gh−1

i )
∂xα(gh−1

i )
∂xα(gh−1

i )
∂xµ(h−1

i )
dxµ(h−1

i )
dτ

∣∣∣∣
τ=0

= −Lα
i (g)∂αψphys.

Hence, the wave functions of the physical sector of states
satisfy the equation

Lα
i ∂αψphys ≡ 1

i�
p̂iψphys = −σ̃iψphys. (6.13)

This points to the fact that pi = Lµ
i ◦ pµ describes the

representation of Lie(H).
Using (6.13) one can express the “horizontal deriva-

tive” Dα in terms of the generators σ̃i. The derivative Dα

acts on the physical sector by

Dα =
(
∂α + Ai

ασ̃i

)
ψphys. (6.14)

This formula coincides with the definition of the invariant
derivative associated with the action of the gauge group.

Finally, using (6.14) in (6.3) we find a coordinate rep-
resentation of ĤG/H on the physical sector:

ĤG/H = −�
2

2
(Dα + Γα) gαβDβ − �

2

2
Ĉ, (6.15)

where Ĉ = ηij σ̃iσ̃j is the Casimir operator of the unitary
representation of H.

According to the general theory of unitary representa-
tions [7], the irreducible representations of Lie groups are
finite dimensional and can be described by eigenvalues of
the Casimir operator.

Therefore, the given irreducible unitary representation
describes one from several inequivalent theories on G/H
based on the Hamiltonian (6.3).

The analysis of inequivalent quantum theories has been
performed in [4] in terms of the representation theory Weyl
relations. Our final results, obtained by means of the ex-
tended Schwinger quantization scheme, completely corre-
spond to the results of ([4]).

7 Summary and discussion

Quantum mechanics on the homogeneous manifold G/H
has been constructed using our extension of the Schwinger
quantization procedure. The essential feature of quantum
mechanics on G/H consists of the appearance of the gauge
structure induced by some unitary (irreducible) represen-
tation of the isotropy subgroup H ⊂ G (H plays the role
of a gauge group). The gauge field corresponds to the con-
nection 1-form of the fiber bundle G(G/H,H). There ex-
ist a number of inequivalent quantum theories classified
by eigenvalues of the Casimir operator of the unitary rep-
resentation.

A successful development of quantum mechanics on a
homogeneous Riemannian manifold with simply and non-
simply transitive transformation groups of isometries
shows that the extended Schwinger quantization scheme
is suitable for constructing quantum mechanics on a man-
ifold with a group structure. This approach can be applied
to analyze a number of models such as Kaluza–Klein the-
ories [3] or to generalize the simplest hadron models [6].

Appendix

A Realizations of Lie groups on manifolds

Lie groups and Lie algebras

Let G be a p-dimensional Lie group with a local coordinate
system {xM (g) : g ∈ G,M = 1, p} at a point g ∈ G.

Left and right translations are defined by

Lg : G −→ G,

h −→ Lgh := gh,

Rg : G −→ G,

h −→ Rgh := hg.
(A.1)

In the tangent space ThG, Lg and Rg induce the following
differential maps

dLg : ThG −→ TghG, dRg : ThG −→ ThgG. (A.2)

In the local coordinate system {xM (·)} the element A|h ∈
ThG can be written as

A|h = aM (h) ∂M |h . (A.3)

Therefore we can express the transformations (A.2) in the
local form

dLg(A|h) = aM (h)
∂xN (gh)
∂xM (h)

∂

∂xN (gh)
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= aM (h)LN
M (gh, h)

∂

∂xN (gh)
, (A.4)

dRg(A|h) = aM (h)
∂xN (hg)
∂xM (h)

∂

∂xN (hg)

= aM (h)RN
M (hg, h)

∂

∂xN (hg)
, (A.5)

where we denote the matrices of the left and right trans-
lations together with their inverses by

LN
M (gh, h) =

∂xN (gh)
∂xM (h)

, L
M

N (h, gh) =
∂xM (h)
∂xN (gh)

, (A.6)

RN
M (hg, h) =

∂xN (hg)
∂xM (h)

, R
M

N (h, hg) =
∂xM (h)
∂xN (hg)

(A.7)

(here L = L−1, R = R−1).
The Lie algebras of left- and right-invariant vector

fields are constructed by left and right translations of the
elements of TeG (e ∈ G denotes the unit element) respec-
tively.

We denote the basic element of TeG by

TA|e =
∂

∂xA(e)
:= ∂A|e. (A.8)

Then the set of left- and right-invariant vector fields

LA|g := dLg

(
∂

∂xA

∣∣∣∣
e

)

= dLg(TA|e) = LM
A (g)

∂

∂xM

∣∣∣∣
g

, (A.9)

RA|g := dRg

(
∂

∂xA

∣∣∣∣
e

)

= dRg(TA|e) = RM
A (g)

∂

∂xM

∣∣∣∣
g

(A.10)

form a basis of the left [right] Lie algebra Lie(G) of the
Lie group G. The corresponding matrices L(g) = {LM

A (g)}
and R(g) = {RM

A (g)} are obtained by the reduction of
(A.6) and (A.7):

LM
A (g) = LM

A (gh, h)|h=e,

L
A

M (g) = L
A

M (h, gh)|h=e, (A.11)

RM
A (g) = RM

A (hg, h)|h=e

R
A

M (g) = L
A

M (h, hg)|h=e. (A.12)

Here, as in Sect. 2 the first lot of Latin indices A,B, . . .
= 1, p is used to indicate the group degrees of freedom
(i.e. the frame of TeG), and the final one M,N, . . . = 1, p
describes the tensor degrees of freedom.

The structure equations for the left Lie algebra are

[LA, LB ] = cC
ABLC , (A.13)

or, in a local form

LM
A ∂MLN

B − LM
B ∂MLN

A = cC
ABLN

C . (A.14)

The right Lie algebra has the basis {RA = RM
A ∂M} and

obeys similar structure equations; these can be obtained
by the following replacement

LM
A −→ RM

A , cC
AB −→ −cC

AB .

The inverse matrix L satisfies the Maurer–Cartan
equations

∂ML
A

N − ∂NL
A

M = −cA
BCL

B

ML
C

N . (A.15)

Note that left and right Lie algebras are commutative,

RM
A ∂MLN

B = LM
B ∂MRN

A . (A.16)

Action of Lie group on manifold

Let M and G be a smooth manifold and the Lie group of
right transformations on M defined by the map

ρ : M × G −→ M,

(x, g) −→ y := ρgx,
(A.17)

with the following properties
(1) ∀g1,2 ∈ G, ρg1 ◦ ρg2 = ρg2g1 ;
(2) ρe = idM (the identity map);
(3) ∀g ∈ G, ρg : M → M is a diffeomorphism (ρg ∈
Diff(M)).

The realization (A.17) of the Lie group as the trans-
formation group induces the realization of the Lie algebra
by the following procedure.

Let A ∈ Lie(G), gA(τ) := exp(τA) ∈ G, be an integral
curve of A (one-parametric subgroup of G, gA(0) = e).
Then the vector

ρ̃A|x =
d
dτ

∣∣∣∣
τ=0

ρexp(τA)(x) ∈ TxM

defines the realization of A ∈ Lie(G). Due to the homo-
morphic nature of the map ρ : G → Diff(M), the vector
subspace ρ̃Lie(G) ⊂ vect(M) is finite dimensional (vect(M)
denotes the space of vector fields over M).

A Lie group can be realized on itself with the use of
left [right] translations. The induced realization of the Lie
algebra coincides with the Lie algebra of right- [left-] in-
variant vector fields. The basic element of TeG

TA|e = δM
A ∂M |e

is represented by the vector

d
dτ

∣∣∣∣
τ=0

xM (ggA(τ))∂M |g = LM
A (g)∂M |g. (A.18)

Similarly, for the left action we have

d
dτ

∣∣∣∣
τ=0

xM (gA(τ)g)∂M |g = RM
A (g)∂M |g. (A.19)



N.M. Chepilko, A.V. Romanenko: Quantum mechanics on Riemannian manifold II 595

Metric of Lie group

The tangent space TeG at the unit element e ∈ G is a
p-dimensional vector space. We assume that there exists
a scalar product defined by

(·, ·) : TeG × TeG −→ R,

〈A|e, B|e〉 −→ (A|e, B|e).
(A.20)

The scalar products of the basic elements {TA|e : A = 1, p}
form the matrix

ηAB := (TA|e, TB |e) = const (A.21)

that obeys the tensor transformation law under Glp trans-
formations in TeG.

Using (A.21) one can easily show that the scalar prod-
uct of left-invariant fields {LA} on G equals the matrix
(A.21):

(LA|g, LB |g) = (LA|e, LB |e) ≡ (TA|e, TB |e) = ηAB .(A.22)

This scalar product can be identified with the left-
invariant metric of G. If G admits a subgroup H ⊂ G,
the metric can be chosen in diagonal form:

{ηAB} =

(
gab 0
0 gij

)
, {ηAB} =

(
gab 0
0 gij

)
, (A.23)

by means of a Glp transformation. The tensor {gij} in
(A.23) has the meaning of the metric of TeH.

The components of the metric of G can be defined with
respect to the holonomic frame of vect(G) by the following
scalar product:

ηMN (g) :=

(
∂

∂xM

∣∣∣∣
g

,
∂

∂xN

∣∣∣∣
g

)
. (A.24)

Thus, using (A.22) and (A.24) we can write

ηAB = (LA|g, LB |g) = LM
A (g)LN

B (g)

(
∂

∂xM

∣∣∣∣
g

,
∂

∂xN

∣∣∣∣
g

)
.

Therefore

ηMN = L
A

M (g)L
B

N (g)ηAB (A.25)

is the left-invariant metric of G.
If the coordinate transformation is performed by the

right translations, the metric (A.25) transforms as

ηM1M2(g1g2) =
∂xN1(g2)

∂xM1(g1g2)
∂xN2(g2)

∂xM2(g1g2)
ηN1N2(g2).(A.26)

Such a transformation law means that the right trans-
lations on G are isometric transformations of the metric
(A.25). Equivalently, the Lie variation of (A.25) associ-
ated with the right-invariant vector field vanishes, i.e. the
right Lie algebra consists of Killing vectors.

However, the left-invariant vector field is not a Killing
vector of (A.25) in the general case. This is possible if and
only if the Lie group is semisimple. In this case {ηAB}
coincides with an adjoint-invariant Killing–Cartan form
and the right-invariant metric of G is the same as the
left-invariant one. Therefore, the Killing vectors of {ηMN}
correspond to both Lie algebras.

B Connection 1-form of principal fiber bundle

The connection 1-form ω ∈ A1(G,Lie(H)) (see, for exam-
ple, [5]) of the principal fiber bundle G(G/H,H) can be
defined as the restriction of the Maurer–Cartan form of G
to H by the identification of Lie(H) with TeH:

ω : vect(G) −→ Lie(H) ∼= TeH. (B.1)

In this case we can write

ω|g = ωM (g)dxM |g, ωM (g) = L
i

MTi|e, (B.2)

where {Ti|e : i = n + 1, p} denotes a basis of TeH.
In the local coordinate system corresponding to the

(m + n)-decomposition (where Lα
i = 0), the connection

1-form has the following form:

ω|G = ωMdxM |g = L
i

MLN
i dxM |g ⊗ ∂

∂xN

∣∣∣∣
g

= ωµ
MdxM |g ⊗ ∂

∂xµ

∣∣∣∣
g

. (B.3)

Due to the properties of the matrices L and L in such
a coordinate system one can observe that

ωµ = ωµ
MdxM

= dxµ + L
i

αL
µ
i dxα = dxµ + Aµ

αdxα, (B.4)

where Aµ
i = L

i

αL
µ
i has the meaning of a gauge field.
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